
Color Me Surprised: An Interactive Color Picker for UI/UX Designers

EDGAR ONOFRE, University of Washington, USA
VINCENT VAN DER MEULEN, University of Washington, USA

At SIGGRAPH 2017, a team of Adobe researchers presented Playful Palette:
a color picker for digital artists that takes cue from fine art. Playful Palette
enables digital artists to mix colors in the same way they would using
traditional media. To some, innovation in the creative tools industry might
come as no surprise. After all, continued interest in artificial intelligence
and machine learning has sparked conversations about the extent to which
technology can help, or even replace, us. However, UI/UX design tools
seem to be evolving at a slower rate than their digital media counterparts.
This could be worrisome considering that the role of UI/UX designer is
growing simultaneously in importance. In the following paper, we investigate
whether we can use the ideas of Playful Palette to make UI designers more
creative and effective. We implement a basic version of Playful Palette using
web technologies and conduct user tests. Our results (N = 3) indicate that
integrating Playful Palette into modern UI/UX design tools could benefit
UI/UX designers. However, more user studies as well as explorations of
alternatives are needed to conclude that our work could make designers
more creative and effective.

CCS Concepts: •Human-centered computing→ Graphical user inter-
faces; Gestural input; • Applied computing→ Media arts;

Additional Key Words and Phrases: creativity support, user interface design,
color, parametric color gamut representation, interactive interfaces, playful
palette, sketch app

1 INTRODUCTION
SIGGRAPH 2017 saw the introduction of a new digital color picker
by Adobe Research, namely Playful Palette [Shugrina et al. 2017].
Playful Palette draws on traditional media and lets digital designers
explore colors by blending them on a mixing dish. On top of this, it
provides artists with features unique to the digital medium, such as
the ability to both view and manipulate their used colors.

A demo of Playful Palette was shown to the general public at the
2017 installment of Adobe’s [2017] annual conference, Adobe Max.
At that same conference, Adobe [[n. d.]] announced that Adobe Ex-
perience Design, or XD in short, was officially out of beta. Together
with Sketch, Photoshop, Illustrator, Figma, and soon InVision Studio,
Adobe XD is the leading tool for User Experience (UX) and User
Interface (UI) design [UX Tools [n. d.]]. All of the aforementioned
companies are rapidly iterating on their UI/UX design tools but, at
least in the short-term, seem to be converging to two main features.
These features are 1) the ability to design interfaces using an Adobe
Photoshop-like interface and 2) the ability to make said interface
into a clickable prototype, with various levels of fidelity.

For better or for worse, the developments in UI/UX design tools,
which are primarily focused on enhancing existing features, appear
to be less radical and future-facing than (Adobe’s) developments in
digital media tools. Considering that the role of UI/UX designer is
growing in importance, it is worth asking ourselves if we can also
make the lives of UI/UX designers easier by promoting their tools to

Authors’ addresses: Edgar Onofre, University ofWashington, 1410 NE Campus Parkway,
Seattle, WA, 98195, USA, edgaro@uw.edu; Vincent van der Meulen, University of
Washington, 1410 NE Campus Parkway, Seattle, WA, 98195, USA, meulen@uw.edu.

assistants [Maeda 2018]. Explorations like this, that focus on taking
work out of the hands of the designer, are a natural progression of
the idea that computers can do certain arduous tasks for humans,
which is regaining interest as artificial intelligence is becoming
more popular. Notably, "machine intelligence" is also what design
experts like former Rhode Island School of Design (RISD) president
John Maeda [2018] think design tools are headed towards.
While Playful Palette likely does not qualify as machine intelli-

gence, the concept is interesting because it takes the time intensive
yet crucial task of color selection and makes it significantly eas-
ier and more fun. Picking colors is equally as hard and important
for UI/UX designers. Hence, in the following paper, we investigate
whether we can make UI/UX designers more effective and creative
by integrating Playful Palette into modern design tools. Our short-
term goal is to make the process of color selection simpler and more
enjoyable. UI/UX designers might then be able to save both time and
energy for other important tasks. Long-term, we hope that our work
sparks a debate about the relationship between UI/UX designers
and their tools, and about what UI/UX design tools currently are
versus what they can be.

2 RELATED WORK
Perhaps the closest that one can come to an "existing" UI/UX design
tool integration of Playful Palette, is an abandoned patent applica-
tion by Figma from 2014 [Wallace and Field 2014]. Presently, Figma
has a standard color picker. However, three years before Adobe
published its research, Figma was exploring what is essentially the
UI/UX design equivalent of Playful Palette. For the sake of time and
the experiment, we decided not to deviate too much from Playful
Palette. Moreover, we only found out about Figma’s patent long
after we had finished conducting our user study. Nonetheless, it
is a perfect example of how one could elegantly integrate Playful
Palette into a modern design tool. Figma’s color picker consist out
of three components: a color preview, an HSV picker, and a color
palette (see Figure 1). Its color palette section makes it similar to
Playful Palette. Here, Figma automatically generates a color palette
by interpolating between a set of anchors that each denote a color.
Users can add, remove, and move around anchors, after which new
interpolated colors are generated. In other words, the color palette
in Figma’s patent application is essentially Playful Palette’s mixing
dish.
Besides Figma’s patent application, there appears to exist little

research that explores alternative, and more creative ways of select-
ing colors in UI/UX design. The Playful Palette authors cite Kita and
Miyata [2016] and Wijffelaars et al. [2008], among others. Kita and
Miyata investigate why we prefer certain colors over others. They
use the resulting color rating model to automatically expand color
palettes. Wijffelaars et al. enable users to generate color palettes
using intuitive parameters, such as number of colors and hue range.

, Vol. 1, No. 1, Article . Publication date: March 2018.



Fig. 1. Figma’s patent application: Automatically generating a multi-color
palette and picker.

Both the work of Kita and Miyata and Wijffelaars et al. is impres-
sive, but does not deal directly with color selection in UI/UX design.
Furthermore, it reduces the extent to which color selection is about
fun and exploration, which is the opposite of what Playful Palette
aims to do. Perhaps a closer approximation to our work is a color
picker by Guosheng et al [2012]. Using this color picker, users can
easily create harmonious color palettes. Yet again, there is no explicit
focus on UI/UX design however. One could also argue that while
important, harmonious color palettes are rather trivial to generate.
Because Sketch has the most open ecosystem of all the popular

UI/UX design tools, we expect any existing Playful Palette implemen-
tations to be Sketch plugins. While no Sketch plugin is comparable
to Playful Palette, it is worth our time to briefly discuss the Sketch
color plugins that do exist. After all, they represent the ways in
which plugin authors have tried to make color selection easier for
UI/UX designers. Chain [2017] and Bjango Color Creator Templates
[2018], both popular among Sketch users, enable users to gener-
ate palettes by enforcing relationships such as brightness between
colors. Chromatic, which also appears among the first results on
GitHub, takes a blob-like approach by providing the user with a color
scale for any two colors [petterheterjag 2017]. It is clear that when
it comes to Sketch plugins, existing solutions also focus less on the
manual exploration of colors. Notably, none of the aforementioned
Sketch plugins are standalone color pickers either.

3 IMPLEMENTATION

3.1 Creating Colored Metaballs
There are a variety of ways to render blobs, or metaballs. We use
HTML5 Canvas and a technique described in blog posts by Loktar
[2012] and Hoffman [2012]. The idea behind this technique is to
make use of a hidden, temporary canvas and a visible canvas. Every

time the user clicks on the visible canvas, we draw a radial gradi-
ent at the corresponding position of the user’s mouse click on the
temporary canvas. This radial gradient starts with the appropriate
(rgba) color in its center, and slowly fades out towards its edges.
Because the gradient transitions from a solid color to transparency,
the circle’s alpha value can be thought of as a function that produces
lower values as the distance to the circle’s center increases. With
only one circle on the temporary canvas, this fact is of little im-
portance. However, it means that when two radial gradients partly
overlap, the shared pixels will have higher alpha values than they
would have had if only one circle had existed. This observation is
the key to rendering blobs.
Once we have drawn a radial gradient on the temporary canvas

in response to the user, we take our temporary canvas, that at any
given point in time is comprised of n radial gradients, and process
it pixel by pixel. If a pixel’s alpha value is at least 200 on a 0-255
scale, we transfer it to the exact same location on the visible canvas.
Since the inclusion in other circle’s areas can give pixels a higher
alpha value, causing them to show up on the visible canvas, colored
metaballs are created naturally. As can be seen in Figure 2 and
Figure 3, this approach produces similar results to Playful Palette’s.

3.2 Using HTML5 Canvas with React and Redux
The aforementioned technique for rendering colored metaballs only
requires a HTML5 Canvas object. Nonetheless, we chose to use
React and Redux to be able to a) develop our interface as a collection
of components and b) easily share state across different parts of
our UI. We found that there especially was a need for point b), as
more than one component need to know information such as the
currently selected color.

We render a Sketch-like color picker using react-color [casesand-
berg 2018]. The flow of information is as one would expect from a
typical React/Redux app. When the user clicks on the visible canvas,
we dispatch an action, a plain JavaScript object, that contains the
click’s coordinates and the color that was selected. A reducer then
adds this point to the piece of state that describes all of our app’s
points, without mutating this piece. The Playful Palette component,
or mixing dish, makes use of the renderProps pattern to listen for
changes in the app’s state [Facebook [n. d.]]. Every time the global
collection of points change, Redux informs the Playful Palette com-
ponent about the new set of points. The temporary canvas, and
subsequently the visible canvas, rerender using the technique de-
scribed in the previous subsection and the user sees new blobs.
Because the Sketch color picker is also listening for changes in the
points state, the user’s color history gets updated automatically.

If one knows how to render a blob on user click, enabling the user
to dissect and move around blobs is fairly straightforward. When
the user clicks anywhere on the visible canvas, we first determine
whether they are clicking on an existing blob. We know the user
is clicking on an existing blob if the pixel’s alpha value is greater
than or equal to our predetermined alpha threshold of 200. If that
is the case, all we need to do is loop over our collection of points
as described by Redux, and find the point (circle center) that is
closest to the mouse coordinates. Once we have determined the
nearest point, we tell Redux it needs to move the point to a new

2



Fig. 2. Color Me Surprised’s blobs.

Fig. 3. Playful Palette’s blobs.

location every time the user moves their mouse, thus simulating
dragging a blob. As soon as the user releases their mouse click, we
stop informing Redux about changes in the mouse’s position as the
user is no longer dragging the blob.

4 USER STUDY
We conducted three user tests with three student designers. We
asked each participant to color in a premade interface in Sketch (see
Figure 4) using their choice of colors with Sketch’s color picker (Task
1). We then had the participants design the same interface using
the Color Me Surprised color picker (see Figure 5), which features
mixing color blobs to produce the user’s desired color and records a
history of colors used (Task 2). The participant would create a color
in Color Me Surprised using the blobs, then use the eyedropper
function in Sketch to select the color and copy the hex code into
Sketch’s color picker for the color to take effect. Approximately
10 minutes were allocated for each task, which we switched after
each participant. We asked the designers to verbalize their process
for each task, point out any strengths or weaknesses, to better

Fig. 4. Blank UI used during user testing.

Fig. 5. UI colored in during user testing.

understand our product. We recorded some of the screens during
the studies for further investigation and took notes of what we were
observing.

The verbal feedback during our studies was very informative. One
participant said "It was much more like mixing colors on a paint
palette. I like how it keeps a history of what color I am using. It
was nice being able to move around the blobs." Another participant
said they like "the interactiveness instead of monochromatic of
clicking." The participants had many suggestions. For example, they
mentioned adding a delete function to get rid of unwanted blobs on
the canvas, by either dragging it off the screen or dragging it into
a corner that has a trash can icon. Next, a participant suggested a
feature that would allow you to increase or decrease the size of the
blob to have a stronger or weaker gradient in the mixing of colors.
Additionally, another participant mentioned the idea of having a
smart color picker that would be able to suggest color palettes that
go well together when a user clicks on a color. Overall, all the
participants said they would like to see the Color Me Surprised
color picker in a modern UI/UX design tool.

5 CONCLUSION
Based on assumed designer needs, we designed Color Me Surprised,
an interactive color picker interface. We introduced an effective
and exciting tool for UI/UX designers that allows for color editing
and provides a color history. Color Me Surprised is an application

3



that is designed to make it easier for UI/UX designers to combine
colors in a way that is novel and visually appealing. Our user studies
confirmed our interface was efficient at assisting the designer’s goals
and creativity.

6 DISCUSSION
While our users were excited about our color picker, there are a
variety of problems with our methodology that could negatively
impact our study’s generalizability. First, contrary to the Playful
Palette team, we did not verify that the perceived problem, color
selection in UI/UX design, indeed is a problem. Second, we recruited
research subjects by asking fellow design students to participate
in our user study instead of reaching out to a diverse selection
of participants. As a result, we introduced selection bias into our
study and worked with participants that were more likely to give
us favorable answers. Third, we should have worked with a higher
number of participants than we did (N = 3) because our results are
currently not statistically significant. Fourth, the setup of the user
testing was inconvenient because users were not fond of having two
windows open at the same with our color picker and the program
Sketch. They would have preferred a Sketch plugin. Last, it would
have been wise to follow Adobe Research in collecting quantitative
feedback. That would have allowed us to perform t-tests and get a
sense of our results’ significance.

7 FUTURE WORK
Our work can be extended and improved upon by addressing the
issues outlined in the "Discussion" section. It is our hope that, once
these problems have been addressed, it turns out that our conclu-
sions were sound and the ideas of Playful Palette can indeed be
used to make UI/UX designers more creative and effective. If that
is the case, a logical next step would be to turn our tool into an
actual Sketch plugin. The existence of a Sketch plugin that radically
changes the way designers work with color will hopefully prompt
the makers of the most popular UI/UX design tools to revisit their
traditional color picker. Hence, in the most favorable scenario, ex-
tending our work could be a first step towards a more helpful and
supporting, new generation of UI/UX design tools.

ACKNOWLEDGMENTS
The authors would like to thank Alex Colburn, Barbara Mones,
Deepali Aneja, and Gary Faigin of the University of Washington,
Seattle for their help and guidance.

REFERENCES
Adobe. [n. d.]. Closure of the Adobe XD Beta program. ([n. d.]). https://helpx.adobe.

com/xd/kb/closing-adobe-experience-design-beta-program.html
Adobe. 2017. PlayfulPalette: Adobe MAX 2017 (Sneak Peeks) (Sneak Peeks) | Adobe

Creative Cloud. (Oct 2017). https://www.youtube.com/watch?v=bo5MM0gD6cM
Bjango. 2018. bjango/Color-Creator. (Mar 2018). https://github.com/bjango/

Color-Creator
casesandberg. 2018. casesandberg/react-color. (Feb 2018). https://github.com/

casesandberg/react-color
Facebook. [n. d.]. Render Props. ([n. d.]). https://reactjs.org/docs/render-props.html
Hoffman. 2012. 2D Metaballs in XNA. (Jun 2012). http://nullcandy.com/

2d-metaballs-in-xna/
Guosheng Hu, Zhigeng Pan, Mingmin Zhang, De Chen, Wenzhen Yang, and Jian

Chen. 2012. An interactive method for generating harmonious color schemes. Color
Research and Application 39, 1 (Dec 2012), 70âĂŞ78. https://doi.org/10.1002/col.21762

N. Kita and K. Miyata. 2016. Aesthetic Rating and Color Suggestion for Color Palettes.
Computer Graphics Forum 35, 7 (Oct 2016), 127âĂŞ136. https://doi.org/10.1111/cgf.
13010

LaloMrtnz. 2017. LaloMrtnz/Chain. (Aug 2017). https://github.com/LaloMrtnz/Chain
Loktar. 2012. 2d Metaballs with canvas! (Jun 2012). http://www.somethinghitme.com/

2012/06/06/2d-metaballs-with-canvas/
John Maeda. 2018. Design in Tech Report 2018. (Mar 2018). https://designintech.report/
petterheterjag. 2017. petterheterjag/chromatic-sketch. (Nov 2017). https://github.com/

petterheterjag/chromatic-sketch
Maria Shugrina, Jingwan Lu, and Stephen Diverdi. 2017. Playful palette. ACM Transac-

tions on Graphics 36, 4 (2017), 1âĂŞ10. https://doi.org/10.1145/3072959.3073690
UX Tools. [n. d.]. Design Tools Survey. ([n. d.]). https://uxtools.co/survey-2017
Evan Wallace and Dylan Field. 2014. Automatically generating a multi-color palette

and picker. (Feb 2014).
Martijn Wijffelaars, Roel Vliegen, Jarke J. Van Wijk, and Erik-Jan Van Der Linden. 2008.

Generating Color Palettes using Intuitive Parameters. Computer Graphics Forum 27,
3 (May 2008), 743âĂŞ750. https://doi.org/10.1111/j.1467-8659.2008.01203.x

Received ; revised ; final version ; accepted

4

https://helpx.adobe.com/xd/kb/closing-adobe-experience-design-beta-program.html
https://helpx.adobe.com/xd/kb/closing-adobe-experience-design-beta-program.html
https://www.youtube.com/watch?v=bo5MM0gD6cM
https://github.com/bjango/Color-Creator
https://github.com/bjango/Color-Creator
https://github.com/casesandberg/react-color
https://github.com/casesandberg/react-color
https://reactjs.org/docs/render-props.html
http://nullcandy.com/2d-metaballs-in-xna/
http://nullcandy.com/2d-metaballs-in-xna/
https://doi.org/10.1002/col.21762
https://doi.org/10.1111/cgf.13010
https://doi.org/10.1111/cgf.13010
https://github.com/LaloMrtnz/Chain
http://www.somethinghitme.com/2012/06/06/2d-metaballs-with-canvas/
http://www.somethinghitme.com/2012/06/06/2d-metaballs-with-canvas/
https://designintech.report/
https://github.com/petterheterjag/chromatic-sketch
https://github.com/petterheterjag/chromatic-sketch
https://doi.org/10.1145/3072959.3073690
https://uxtools.co/survey-2017
https://doi.org/10.1111/j.1467-8659.2008.01203.x

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Creating Colored Metaballs
	3.2 Using HTML5 Canvas with React and Redux

	4 User Study
	5 Conclusion
	6 Discussion
	7 Future Work
	Acknowledgments
	References

